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The problem of supersonic fiow past a V-shaped wing is cousidered in trans- 
onic approximation. The behavior of solution for modes close to the flow 
with a plane compression shock stretched over the [wing] edges is investigated 
in linear formulation. The mathematical problem reduces to the Kiemann 
boundary value problem for analytic functions. The flow properties are invest- 
gated at small ~~rbati~ of the onco~ng stream velocity. It is shown that 
when a plane compression shock at the wing edges in a plane normal to the ed- 
ge isweak, the character of the fIow is unaffected by variation of the Mach num- 
ber. If, however, the shock in the main flow is strong, a rearrangement of 
the stream pattern is induced by a change of flow parameters. The considered 
problem is related to that of flow around star +&aped bodies investigated in 
Q-53; the processs of r~~gern~t of the mode of ilow past a V-shaped 
wing was analyzed by numerical methods in f6] and investigated experiment- 
ally in VI. 

Star-shaped bodies are bodies of least drag whose magnitude depends on the charac- 
ter of flow around therm A star-shaped body may be considered as composed of a 
number of V -shaped wings, for which it is pcasible to derive a class of exact solut- 
ions with a plane shock at their edges. For this we consider the plane supersonic flow 
past a wedge. We draw through the velocity vector behind the compression shock two 
planes symmetric about the normal to the wedge. Parts of these planes compresed be- 
tween the wedge surface and the compression shock form a V -shaped wing at whose 
edges a plane compression shock is formed. When the flow past the wedge is super - 
sonic a weak compression shock is always present [8]. However, the analog of the 
polar of the shock equation in a plane normal to the wing edge shows that, depending 
on the wing apex angle, the exact solution corresponds either to a weak or to a strong 
compression shock, A boundary value problem, dependent on the type of shock in the 
plane normal to the wing edge, is formulated for the determination of the flow pattern 
at small pe~~a~~ in the flow with a plane compression shock at the wing edges, 
The flow properties are determined by the conditions of solvability of that problem. 

l. Let us consider this problem in the transonic approximation. A plane compre- 
ssion shock appear at the edges of a ‘IJ -shaped wing in a sliahtly supersonic stream. 
In a coordinate system attached to the wing edge with the 5 -axis on the wing edge 
and the Y -axis in the wing plane of symmetry (see Fig, l}, the components of trc;n- 
sonic velocity u = (1 -j- u,, u, w) (normalized with respect to the speed of sound) 
upstream and downstream of the shock wave are, respectively 24 = r&r, v = r&Jr, 
W =O and u=uo2,v-s0 and UY = 0 , We shall call this solution unperturbed. 
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The soluticm of the problem for small perturbations of the oncoming stream velocity 
is obtained by the method of the small parameter. If C denotes the small parameter, 

Fig. 1 Fig. 2 

the velocity compone& upstream and downstream of the shock wave become u = 
hi (1 i- ef, u = uor, and w = 0 and u = tco2 f u’, v = u’, and w = w’. 
In the transenic appraximation the cemldered flow is pote&al, and its potential sat- 
isfies the equation 

a@ aaq, aoa, a%@ 
-~~+~+~=O 

Since the flay is Conically symmetric and all solutions depend on variables % = 
2 / 2 and .q = y / 5, we introduce in the analysis the potential cp (%, q) = 0 

(3, Y, 4 / 3. The velocity compon&s are defined as follows: 

‘C=‘P-%Q-VRl=‘P-&--_9 u=(P?l, W”‘PE (1.1) 

We represent the potential cp ia the fam cp = tpo + cp’ = uoe + cp’, where 

‘PO = tlOp is the pote&fal of the unperturbed flow. The linearized equations for 
cp’ isoftheform 

boa = ka) . Its equivalent system is 

From (1.1) and (1.2) we obtain for w’ the equation 

(1.2) 

(1.3) 

( 1.4) 

The mode of flow with a strong compression shock in the plane normal to the wing 
edge belongs to the ellipticity region (p + ?‘js < 1 / k*) of Eq. ( 1.8 (see Sect. 3). 
Let us form&late the bamdary value problem for Eq. (1.4). Region T in which we 

seek the solution is represented by the triangle formed by traces of wing surface, the 

shock wave, and the plane of symmetry, and lying within a circle of radius 1 lk. 
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The equation of compression shock in the plane (E, T)) in the unperturbed flow is 
of the form V = q. = const. The equation of shock for the perturbed flow can be 
represented as 11 = ?lo + g’ with 

q’ = 0 ( 1.5) 

at point A , which conforms to the assumption that for small perturbations the shock 
remains attached to the wing edge. At the compression shock we have the conditions 

[U + Ew + TlVJ = [cpl = 0 ( 1.6) 

h.d%* = [WI2 + [VI2 (1.7) 

the first of which defines the continuity of the potential and the second is of the form 
of the shock polar. In these equations cj] is the jump of f at transition through the 
shock wave, and U* is the half of the sum of values of u upstream and downstream 
of the shock. From (1.6) we obtain conditions of continuity of the unperturbed flow 
potential and of the potential of perturbations 

UOI + IlOVOl = uo2, 0' = =01 + ?‘VOI = u’ + qo@’ / dq + (1.8) 

EW J 8% 

Condition (1.7) decomposes into the equation of the shock polar for the unpertur- 
bed flow and for perturbation velo#y components 

(uo2 - q,I)2(uo2 + ~01) / 2 = uo12, au’ + u’ + b = 0 (1.9) 

2vos = (uo2 - uo1)2 / 2 + uo22 - uo*e 

2volb = EUor bo2 - u&2 / 2 - uo22 + UO121 

From (1.8) and (1.9) we have 

uor = 2 (c” - 1) / q?, 2401 = (2 - 3) / qo2, u,,qo2 = c2 ( 1.10) 

Using (1.1) we rewrite the last of relations (1.9) in the form UT + cprl’ (1 - 
mO) - qE’a% + b = 0. Differentiating this along the shock wave we obtain for 
Eq. (1.4) the following boundary condition: 

rl = To, a&’ - (1 - aqo)w,’ = 0 ( 1.11) 

At the wing surface the condition of impermeability v’ = w’ tg /3 applies. 
By differentiating it along the wing, and using Eq. (1.3) we obtain a boundary condit- 
ion of the form 

IJ - 5 tg /3 = 0, (2 - FE2 / CO82 B)tg Bwe’ - (1 - tg” p + (1.12) 
k2g2 tg” j3 I cos2 fJ)w,’ = 0 

Since at the plane of symmetry w’ = 0, hence the condition 

5 = 0, w,’ = 0 (1.13) 

Note that the formulation of the boundary value problem in the case of exact eq- 
uations of gasdynamics is similar (except that pressure is substituted for the potential).’ 

2, Let us reduce problem (1.4), (1.11) - ( 1.13) to the investigation of Biemann’r 
problem on a circle. The coordinate transformation 

5 = 2~ ! [k (1 + p2 + h2)l, q = 2h / [k (1 + pa + he)1 (2.1) 



42 A. V. Grishin and E G. Sbifrin 

which maps the interior of the circle of radius 1 / k on to the interior of a unit circle 

in the plane (p, h), reduces ES (1.4) in the ellfoticity region to the Laplace eqnat- 
ion. Region T is then mapped onto region OAB (Fig. 2) and the straight fine q = 
rlo onto curve h = [l - VI - c1 (1 + @)I / c. The boundary sectmns OA 

and OB ate only n\bjccted to stretching, since transformation (2.1) dact not affect 
poiarangles. RojntA fsthefnter#ctlonofcurves h=[i-v/1. -~4(1+ 
n]/ c. and h = B tg p. Mmdary conditions for the Laplace equations on OA, 
AZ3 and BO are, mpectfvdy, 

WV1 - wx’ [pa + cos4 j3 (1 - tga @)I / w@; B mJ4 131 = 0 (2.2) 

Lu,‘Y [(I .+ c3 c - an] - w; [h (1 - 8) c - 2py = 0, lo&’ = 0 

N&e that the bamdary conditions are of the form SW; - L& = 0. thus 
(2.2) is a problem with a dIrectional derivative for the Laplace equation, which reduc- 
es to the Hilbert problem for analytic function. We set f = w;, and g = - wk. 

FurmUon F (2) = f (P, A) + ig (P, V is analytic and satisfies at the region bound- 
ary the discontim~ity bamdary coadiUon 

s (z)f (z) + L (%? (z) = 0 (2.3) 

Let fnnction r = I? (2) conformally map region OAB onto a unit circle. Let 
us formulate the Jziilhert problem for the circle. Bcuadary condition (2.3) in the r - 
plane is of the form 

SI (WI 6) -I- Ll (Ml 6) = 0 
(2.4) 

SI (R (7)) = 8 ($7 L, (R W) = L w, fr (4 (a = f (?I 

g1 (R (a = g (4 

At points k, ts, and rs which correspond to points 0, A, and B functions 
Sx (t) and L1 (t) are dbconttnuaur. solution of the L%lbert problem for a circle 

coincides with the inner solution of the c-8 Riemarm’s problem 193 

PI+(~) = G WWG, G(t) = Ml (t) + iLr @)I / is, (t) - iL1 (ql (205) 

The investigation of the problem of flow past a V -shaped wing thus reduces to 
an investigation of Riemann’s problem with discontinuous coefficient on the circle. 

Let (-0,) be the jump of the argument of funCti4n SI (t) -i- iL1 (t) at the 
&continui~ pint tk and be equal to the jump of the argument of function S (z) 
+ iL (z) at the corresponding discontinuity point % The jump of ttte argument 
of t’& (t) at point tlr is eqnal 1--2&J. Riemann’s problem With diaeoMinuoM co- . 
efficient can be reduced to Riemann’s problem with caatinuous Cotfflcient [93 

Fzf (t) = GS (t) FS- (t), G2 (t) = fi (t - rd-‘k GI (t) (2.6) 

k==l 

The soluUon of problem (2.5) in terms of sol&ion of pWlem (2.6) is of the form 

F1+ (r) = fi (P - tk)‘k Fz+ (r), Re yR = -$ - xk 
k=d 

where xk = [e, / nl, if boundednes of solutian is rewired at point tl, , and 

xk = [Ok / 52 + i] when integrable infinity is admissible at point tk [9]. An 
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essential ~irem~t in the considered problem is that of integrable of P (2) in 
the 2 -plane, which is equivalent to the requirement for W’ to be bounded. Let us 
determine the behavior of solution in the z-plane. Function fi (2) which maps 
region OdB onto the circle can be represented in the neighborhood of comer points 
in the form r = tk f Ck (z - ~Gt,)~‘o& $- . . ., where C&L is the angle between 
the tangents to the boundary of region O&J at the comer point zk. The solution 
of the problem in the n~g~o~~ of these points is then of the form F (2) = F*f 
(R (2)) = cy (2 - t#vEfur Fs+ (R (2)). Hence the solution at points Q under 

condition 

Re (‘r%c / ak) > --1 (2.7) 

has an integrable infinity, Using this property we determine the numbers xk. We 
shall consider two cases: 0 < eA: ( s and -n < f& ( 0 , and assume that for 

O,< fjk <n Fi+ (r) has an integrable infinity at point tk. Then xk r= 1, 
and Re ,fk = 61, / 3E - 1. It follows from (2.7) that integrability in the z -plane 
depends on the fulfilment of condition f& > rc - CCL. When ok < X - c&k the 
boundedness of the solution in r implies that 3cb = 0, and then Re y = 8% / tt 
and condition (2.7) are satisfied. We pass to the case when a < & < 0. Assum- 
ing that Fi+ (r) has an integrable ~~~~ at point tk we obtain xk = 0 and Re 

= 13~ / n. It follows from (2.7) that integrability in the 
fSilment of condition Ok > 

z -plane depends on the 
- &k. The boundedness of solution in r for E)k < 

-ak implies that xk = --1, hence Re yk =81,/n + 1 andcondition(2.7) is 
satisfied. 

Let us pass to the analysis of boundary conditions, Note that nowhere along the 
bamdary of region OAB d’ and t vanish ~~l~n~ly. Since at the boundary 
of OAB S > 0, hence when moving around the contour OAB the argument of 
function S + iL cannot vary by more than 3t on any section of that contour. Since 
the argument of funntion S + iL is determined on every section of the boundary to 
within 2nn and the selection of the argument branch does not affect the final result, 
we assume the a~ment to be arctg (& / s). Then f @k f < 3b and the numbers 

xk are determined by the method indicated above. Formula (2.2) shows that by such 
selection of the argument branches the boundary condition discontinuity at point B is 
avoided. The problem is now reduced to the determination of numbers xk depending 
on the position of point A. We denote the quantities 0 , aE, and Xk at points 0 
and A by 0r, al, x1 and fjs, as, xs, respectively. We fix c and observe the chan- 
ges of oli and a:, at points 0 and A- when point A mov1?s along the curve h = 
11- v’l - c2 (1 f p?)] / c. Using formulas (2.2) and the method of determining 
numbers xti we find that independently of the position of point A the condition at 
<%<3t-- al is satisfied, hence it is necessary to set x1 = 0 at point 0 in or- 
der to ensure the integrability of solution in the z -plane. If point A lies in the reg- 
ion to the left of the curve that corresponds to the condition sins p = (es -f- 1) I 2. 
we have --n<8,< -a2, and if it is to the right of that curve we have - a, < 
%<n -a*. We call these regions strong and weak, respectively (regions 1 and 

2 in Fig. 2 ). The method of determination of xI; implies that to ensure the integra- 
bility of solution in the 2 -plane it is necessary to set x2 = --1 in the strong region 
and x2 = 0 in the weak one. 
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We denote the index of problem (2.5) by x _ It is known that 

i.e. inthestrongregion x = -1 and in the waak x = 0. In conformity with 
the theorem in CSJ this imp&s that the problem is insoluble in the strong~mgion, whi- 
le in the weak region it has a single Unearly indynrr5deat solution. A trivial solution 
is to be disregarded, since it does not satisfy condition (1.5). 

3. We shall now clarify tie physical meaning of derived solutious. In a plane 
normal to the wing edge the weak region correspon#a to a weak compression shock, 
and the strong region to a strong shock to the analog of the shock polar, Using form- 
ulas (1.10) and denacIng the tramc4c’velocity ccmpcnents by an asted&, we obtain 

% = sin~/qs, U$ = (2 - es --/*sins@)3)T&& u;* =o 

U$ = sin f3/%, Us = (8 -lfnsfnS@) /Q, UzT = 2(1- c~)~@fq,~ 
wh~~U1~,U1~~ndU~T(i~;1,2)arcvd~Odtyco~~~in~r~~~ofR, N, and T, 
where R is tb unit v&a amg the wing edge, N is the unit vector whose direct- 
ion coincillsa with that of w&or lJ1 - U%nR which lies in the plane normal tb R, 
aadT= R x N bee fig. I). 

The tr~c conpxmt8 satMy the Malng of the equation of tie shock polar 

when conditbm d&T* / dU& > 0 is s&s&d we have a stroug compmuion 
shock and when dU$ / dU& ( 0 hot&l the shock is weak. From (3.1) we have 

Sag into this equauon the Q(pFboboo3 for v*, @&, and v*LR we &xl 

tbatwhencondltlon sinsfi>(f fcs)/2 issatfaflcdthecomprq#ionshcckina 
plane normal to the wing edge is strong while under condibIon sin* $ < (1 + cs) / 

2 isweak, 
The ~lva~~ of the bcnndary value problem fade here thus depends on the 

type of compmadou shock in a plane uormal to the wing edge. If the shock is weak 

the flow pattern remains tmchanged, I. e. the compre&on shock is distorted when per- 
hirbat&ons are small, while if %a shock ia skong, the problem has no solntion, which 
indicates a basic rearrangement of the flow pattern. The problem of the pattern of 

flow in the latter case requires a separate investigatiorL 
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